

Simulate a Virus
Laurence Molloy, Creative Smart Things

EMAIL: laurence.molloy@creativesmartthings.com
TWITTER: @MolloyLaurence

PAY WHAT YOU WANT

In recognition of the economic impact of the Coronavirus pandemic, this learning resource has been
made available on a Pay What You Want basis. If you can afford to pay, then please show your
support with a donation. If you cannot afford to pay, then please do not feel obliged to pay anything.

You can make a donation at https://creativesmartthings.com/donations/simulate-a-virus/

https://creativesmartthings.com/donations/simulate-a-virus/

 1

Background 2

Step 1: Create a person sprite 4

Step 2: Create a town with a population of healthy people 5

Step 3: Allow your population to move around freely 6

Step 4: Impose social distancing measures on your population 7

Step 5: Define the parameters of the simulation 9

Step 6: Define the rules of infection 11

Step 7: Plot the infection curve 15

Step 8: Run the simulation 19

Extension challenges 21
Recovery Time (Easy) 21
Population Size (Easy) 21
Chance of Infection (Intermediate) 21
Death Rate (Intermediate) 21
Accelerated Death Rate (Difficult) 21

Appendix: Parental Guidance Notes 22
Instructions and supporting images 22
Adding to existing code blocks / creating new code blocks 22
Creating functions 22
Checking variable types 23

Acknowledgements 24

 2

In this project you will write a program using Scratch 3 that simulates the spread of a virus,
allowing you to examine the effects of social distancing on the rate and extent of infection
spread across a virtual population.

Background
As the coronavirus pandemic spreads across the globe, governments are attempting to
delay its spread among their populations by announcing social distancing measures. So,
what exactly is social distancing?

Definition: ”social distancing“ is the practice of protecting the health of a population by
banning large gatherings of people (such as sports events and pop concerts) and
requiring everyone to maintain a minimum distance from each other at all times. This
reduces the risk of passing on a virus which in turn slows down the speed with which a
contagious illness can spread through the population.

How does social distancing work in practice? Let’s illustrate this with a diagram.

 3

The curve on the right above shows the effect of slowing down the spread of infection. The
time period over which the virus spreads is lengthened. This lowers the maximum number
of infected people at any point in time which reduces the maximum rate of hospital
admissions to a level that the health system can better manage. In the diagram above, this
is represented by the highest points on the curves (# of cases) and the horizontal line
(healthcare system capacity).

This model presumes that everyone will follow the rules imposed upon them by the
government. However, not everyone follows rules. How effective would social distancing be
if 25% of the population were to ignore the government directive to maintain a safe
distance? What if social disobedience is as high as 50%?

In this project we will answer these questions by building a simulation that unleashes a
virus upon a virtual population, observes the spread of that virus over a period of time and
then generates an infection curve, just like the ones above.

Definition: A ”simulation“ is a computer program that models real system behaviours
without having to interact with the physical system. This allows us to learn about costly or
dangerous situations in a completely risk-free way and control important aspects of the
system that would not be easy to control in real life.

In our case, the system is a human population and the behaviour we wish to model is the
spread of a virus among that population. The system aspect that we will be controlling is
the level of civil obedience.

Questions:

1. Why would it be neither possible nor desirable to perform our virus experiments
with a real population?

2. Can you think of other situations where it would be useful to create a simulation to
learn about the behaviour of a system?

Okay. So let’s get down to business and create our simulation…

 4

Step 1: Create a person sprite
Start a new Scratch project by opening https://scratch.mit.edu/projects/editor in a browser.
Every new Scratch project starts with the cat sprite. We won’t be using this so click on the
dustbin icon in the top right corner of the sprite in the sprite area to delete it.

Let’s now create a circular sprite that will represent the people in our population.

1. Click on the new sprite button in the sprite area to create a new sprite. An options
panel will slide up from behind the button.

2. Select the paint option to draw your own sprite. This will open the paint tool.
3. Click on the zoom button in the bottom right corner of the paint tool to zoom in on

the drawing area so you can clearly see the background checkerboard squares.

4. Select the ellipse tool. Move to the centre of the drawing area. Click and hold the
mouse while dragging the pointer to create a circle that is approximately 3 squares
high and 3 squares wide. Once created, you can adjust its size by clicking and
dragging on the edges of the square border around the ellipse object created.

 5

5. Click on the arrow next to the fill color tool. In the display that appears, adjust the
color, saturation and brightness until you get a sky blue colour. This will be our
healthy person colour.

Step 2: Create a town with a population of healthy people
Let’s create a population of 100 healthy people (blue dots) in addition to our original person
sprite and distribute these people around our town (the Scratch stage).

The code in this section should be created for your person sprite.

1. Define a function called setup *. This is where we will set up our initial conditions.
2. Set the start location of our first person to the centre of the screen (go to x:0 y:0).
3. To create a population of 100 people, we will clone our person sprite 100 times. To

do this, place a create a clone of myself instruction inside a repeat 100 loop.
4. To position our population randomly across our town create a when I start as a

clone block of code and attach a go to random position block within it.
5. To generate the population when the program is run, call the setup function

when the green flag is clicked .

* if you’re not sure how to create a function, see the parental guidance notes at the end of this project guide.

Test your code

 6

Click on the green flag to run the code. If you have followed the instructions above you
will see a population of healthy people (blue dots) appear on the stage.

Let’s also test the randomness of our initial population distribution. Re-run the code a
number of times. Does the pattern of dots change with every run?

NOW SAVE YOUR CODE

Step 3: Allow your population to move around freely
Let’s now simulate our population going about its daily business. We can do this by
modelling the movement of each person under normal conditions as a random walk.

Definition: A “random walk“ is a pattern of movement that is similar to wandering
aimlessly around an area. Scientists use random walks to model the behaviour of many
natural processes such as the search path of a foraging animal or the movement of
molecules in liquids and gases (aka Brownian Motion).

 7

1. Create a sprite-specific variable called ”stay at home?“ We will use this variable to
control whether each person will be allowed to move about the town. Every person
will be given its own independent copy of this variable.

2. For now, we will allow the entire population to move around freely. When each
clone (person) is created, set the stay-at-home? variable to false.

3. In the when green flag clicked block, immediately after the setup, repeat 480
time steps. Send a broadcast clock-tick message with each time step.

4. Define a function called random walk that takes 3 steps in a random direction. To
do this, turn a random amount (within +/- 30 degrees) and then move forward
3 steps . If you hit the edge of the screen, bounce back.

5. For each person, when it receives the clock-tick message , if stay at home? is
false (the person is allowed to move) then perform a single random walk step.

Test your code

Click on the green flag to run the code. If you have followed the instructions above you
will see your healthy population moving around the stage. If your population does not
move about the stage, carefully check your spelling for “false” in steps 2 & 5.

NOW SAVE YOUR CODE

Step 4: Impose social distancing measures on your population
We will now impose a rule telling the population that they must stay at home. We also want
to model the fact that not everyone will follow this rule and have control over the level of
civil obedience.

